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1. Introduction

Although the Weyl (or conformal, or trace) anomalies were discovered about 30 years ago [1,

2], it is only very recently that their general structure was displayed in a purely algebraic

manner, in arbitrary dimensions and independently of any regularization scheme [3].

The central equations that determine the candidate anomalies in quantum field theory

are the Wess-Zumino (WZ) consistency conditions [4]. As is well-known, the determination

of the general solution of the WZ consistency conditions boils down to the computation

of the cohomology of the corresponding Becchi-Rouet-Stora-Tyutin (BRST) differential [5]

in the space of local functionals with ghost number one. We refer to the book [6] for

a pedagogical review and many references on the subject of anomalies in quantum field

theory, while the works [7, 8] contain and review the most general results for Einstein-Yang-

Mills and Yang-Mills gauge theories, in the presence of antifields. The literature on Weyl

anomalies is huge. A very nonexhaustive list of references can be found, e.g., in [9 – 14].

The cohomological formulation for the determination of the Weyl anomalies was initi-

ated in the pioneering works [15, 16], with results up to spacetime dimension n = 6 and

the general structure guessed for arbitrary (even) n . The authors of these works found

that the Weyl anomalies comprise (i) the integral over spacetime of σ, the Weyl parameter,

times the Euler density of the manifold, plus (ii) terms that are given by (the integral of) σ

times strictly Weyl-invariant scalar densities. Some of the terms from (ii) can be trivially

obtained from contractions of products of the conformally invariant Weyl tensor, while the

others are more complicated and involve covariant derivatives of the Riemann tensor.

These important cohomological results in dimensions n = 4 and n = 6 were obtained by

listing all the possible terms on the basis of dimensionality and diffeomorphism invariance

and by inserting them into the WZ consistency condition. The structure of the four-

dimensional conformal anomalies was rederived later [17, 18], using the WZ conditions.

Still, no systematic pattern emerged for the general structure of the Weyl anomalies in

arbitrary dimension n .
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Such results appeared later, in [19]. By applying dimensional regularization on the

effective gravitational action generated by a conformally invariant matter system, the au-

thors of [19] could confirm the structure found in [16] and extended the results to arbitrary

n . The Euler term from class (i) was called “type -A Weyl anomaly”, while the terms of

(ii) were called “type -B anomalies”. Very interestingly, from the structure of the poles

in the effective action, it was observed [19] that the type -A anomaly appeared in a simi-

lar way to the non-Abelian chiral anomaly in Yang-Mills gauge theory. That the type -A

anomaly should arise via some “descent identity” was therefore suggested. Subsequently,

this suggestion was taken as a work hypothesis in [20].

More recently, in the holographic context of the anti-de Sitter/Conformal Field The-

ory (AdS/CFT) correspondence where the computation of the Weyl anomaly plays an

important rôle [21 – 23], some cohomological considerations have been applied [24, 25] that

confirm the structure found in [16, 19] and highlight the similarities between the type -A

anomalies and the non-Abelian chiral anomalies.

From these considerations, it appeared that a purely algebraic understanding of the

general structure of the Weyl anomalies, in arbitrary dimensions n and independently of

the AdS/CFT correspondence or of any regularization scheme, was indeed most desirable

and needed. Moreover, one could wonder whether descent equations in the manner of Stora

and Zumino [26, 27] could appear in the classification of Weyl anomalies. It is the purpose

of the present paper to answer these questions, providing detailed proofs. A brief report

of some of our results was given in [3].

More precisely, following the antifield-independent approach as in [6] and using the

powerful cohomological tools reviewed in [8], we solve the WZ consistency condition for

the Weyl anomalies in arbitrary dimensions n . We demonstrate that the type -A anomaly is

the unique solution associated with a non-trivial descent, whereas the type -B anomalies are

given by trivial descents and can be computed by using the systematic, algebraic method

of [28, 29]. We do not resort to dimensional analysis and that the spacetime dimension n

must be even derives from consistency, it is not an assumption. These results are essentially

obtained along the cohomological lines of [30 – 32] and crucially rely on preliminary results

given in [29]. They imply the uniqueness of the known conformal anomalies and solve a

question posed in [19] concerning the similitudes between the type -A anomaly and the

non-Abelian chiral anomalies in Yang-Mills theories.

Incidentally, note also that our results provide a purely algebraic proof of the conjecture

of differential geometry studied recently in [33].1 This is yet another instance of the rich

interplay between the study of anomalies in theoretical physics and mathematics.

2. Cohomological setting

In a theory that is classically diffeomorphism and Weyl invariant, the associated BRST

differential is s = s
D

+ s
W

, where s
D

is the BRST differential corresponding to the diffeo-

morphisms and s
W

corresponds to the Weyl transformations. As in [16], we consider the

1H. Baum is thanked for having pointed out these works to us.
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purely gravitational part of the cohomological problem, where the spacetime metric gµν

is an external classical field. Apart from the (invertible) metric, the other fields are the

diffeomorphisms ghosts ξµ and the Weyl ghost ω , with ghost number gh(ξµ) = gh(ω) = 1 .

Spacetime indices are denoted by Greek letters and run over the values 0, 1, . . . , n−1 . Flat,

tangent space indices are denoted by Latin letters. The action of the BRST differential s

on the fields ΦA = {gµν , ξµ, ω} is

s
D
gµν = ξρ∂ρgµν + ∂µξρgρν + ∂νξ

ρgµρ , (2.1)

s
W

gµν = 2ω gµν , (2.2)

s
D
ξµ = ξρ∂ρξ

µ , (2.3)

s
D
ω = ξρ∂ρω , s

W
ξµ = 0 = s

W
ω . (2.4)

The anomalies an
1 are given by the solutions of the WZ consistency conditions

san
1 + d bn−1

2 = 0 , an
1 6= spn

0 + d qn−1
1 , (2.5)

where superscripts denote the form degree whereas subscripts indicate the ghost number.

All the cochains an
1 , bn−1

2 , pn
0 and qn−1

1 are local forms and d is the total exterior derivative.

A local p -form bp depends on the fields ΦA and their derivatives up to some finite (but

otherwise unspecified) order, which is denoted by bp = 1
p! dxµ1 . . . dxµp bµ1...µp(x, [ΦA]) .

Since we are seeking Weyl anomalies, the ghost degree of an
1 is carried entirely by (a

derivative of) ω . Decomposing the WZ consistency conditions (2.5) with respect to the

Weyl-ghost degree, one finds

s
D
an

1 + d bn−1
2 = 0 , (2.6)

s
W

an
1 + d cn−1

2 = 0 , an
1 6= s

W
pn
0 + d fn−1

1 (2.7)

∀ pn
0 s.t. s

D
pn
0 + dhn−1

1 = 0 . (2.8)

In words, we have to compute the cohomology H1,n(s
W
|d) of the Weyl BRST differential

s
W

modulo total derivatives, in the space of diffeomorphism-invariant local n-forms. As a

matter of fact, an important result of [16] is that it is always possible, by adding a local

Bardeen-Zumino counterterm to the action, to shift away the pure diffeomorphism part

of the candidate anomaly an
1 , leaving only the pure Weyl part of an

1 . This is consistent

with the fact that it is always possible to ensure diffeomorphism invariance throughout

the process of regularization, at the price of losing Weyl invariance upon quantization.

Actually, this can be taken as a definition of the Weyl anomaly.

Before attacking the problem (2.6)–(2.8), it is useful to reformulate the equations for

the computation of H1,n(s|d) in slightly different terms. One can perform the Stora trick

which consists in uniting the differentials s = s
D

+ s
W

and d into a single differential

s̃ = s + d . Then, the WZ consistency condition (2.5) and its descent are encapsulated in

s̃ α = 0 , α 6= s̃ ζ + constant (2.9)

for the local total forms α and ζ of total degrees G = n + 1 and G = n . Local total forms

are by definition formal sums of local forms with different form degrees and ghost numbers,

– 3 –



J
H
E
P
0
7
(
2
0
0
7
)
0
6
9

α =
∑n

p=0 ap
G−p , the total degree being simply the sum of the form degree and the ghost

number. As proved in [30], the cohomology of s in the space of local functionals (integrals

of local n-forms) and at ghost number g is locally isomorphic to the cohomology of s̃ in

the space of local total forms at total degree G = g + n . Furthermore, the cohomological

problem can be restricted, locally, to the s̃-cohomology on local total forms belonging to a

subspace W of the space of local total forms [30]:

s̃ α(W) = 0 , α(W) 6= s̃ ζ(W) + constant , (2.10)

totdeg(α) = n + g , totdeg(ζ) = n + g − 1 .

The subspace W, closed under the action of s̃, is given by local total forms depending on so-

called tensor fields {T i} at total degree zero and on so-called generalized connections {C̃N}
at total degree unity. The latter decompose into a part with ghost number one and form

degree zero plus a part having ghost number zero but form degree unity: C̃N = ĈN +AN .

For a purely gravitational theory in metric formulation, invariant under diffeomorphisms

and Weyl transformations, the space W was found in [29].

The solution of the problem (2.9) will thus have the form

α(W) = C̃N1 . . . C̃NnC̃Nn+1 aN1...Nn+1
(T )

where the anomalies are given (up to an unessential constant coefficient) by the top form-

degree component of the local total form α(W):

an
1 = AN1 . . .ANnĈNn+1 aN1...Nn+1

(T ) .

Now, we are ready to attack the system (2.6)—(2.8). This is done by solving (2.10) at

total degree G = n+1 with s̃ replaced by s̃
W

= s
W

+d and taking the equations (2.6), (2.8)

into account. These last two equations tell us that cocycles and coboundaries of s̃
W

must be

diffeomorphism-invariant. It is important to specify the space in which one computes the

anomaly. Without any restriction of this kind, we would have the triviality of all the Weyl

anomaly candidates an
1 = ωf(T )dnx where f(T ) is a Weyl -invariant scalar density. Indeed,

ωf(T )dnx = s̃
W

[f(T )dnx 1
n ln(

√−g)] . However, the local form pn
0 = 1

n ln(
√−g)f(T )dnx is

forbidden because it fails to obey the condition (2.8).

3. Solution of the Wess-Zumino consistency condition

To reiterate, we must look for s̃
D
-invariant (n + 1)-local total forms α(W) satisfying

s̃
W

α(W) = 0 , α(W) 6= s̃
W

ζ(W) + constant , (3.1)

where ζ(W) must be s̃
D
-invariant. The solution will take the general form

α(W) = 2ω C̃N1 . . . C̃Nn aN1...Nn(T ) . (3.2)

Before continuing with the solution of the WZ consistency condition for the Weyl anomalies,

we must spend some time in order to explain the various symbols that appear in the above

– 4 –
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equation (3.2). In the same process, we will display the gauge covariant algebra associated

with the BRST transformations (2.1)–(2.4) and relate it to the conformal algebra so(n, 2),

in the flat space limit.

The space T of tensor fields is generated by the (invertible) metric gµν together with the

so-called W -tensors {WΩi
}, i ∈ N [29]. It is only necessary to recall here that the W -tensors

are tensors under general coordinate transformations and transform under s
W

according

to s
W

WΩi
= ωαΓ

αWΩi
, where ωα = ∂αω and the n generators Γα (0 6 α 6 n − 1) act

only on the W -tensors. These tensors are built recursively with the help of the formula

WΩk
= (∇αk

+ Kβαk
Γβ)WΩk−1

= Dαk
WΩk−1

, where Kαβ = 1
n−2

(
Rαβ − 1

2(n−1) gαβR
)

and WΩ0
= W µ

νρσ is the conformally invariant Weyl tensor. The symbol ∇ denotes the

usual torsion-free metric-compatible covariant differential associated with the Christoffel

symbols Γµ
νρ , while Rαβ = Rµ

αµβ is the Ricci tensor with Rµ
νρσ = ∂ρΓ

µ
νσ + · · · the

Riemann tensor. The scalar curvature is given by R = gαβRαβ .

The Weyl tensor can be written as

W µ
νρσ = Rµ

νρσ − 2
(
δµ

[ρKσ]ν − gν[ρK
µ

σ]

)
, (3.3)

where curved (square) brackets denote strength-one complete (anti)symmetrization.

The following notation is useful and explains the meaning of the superindices Ωi, i ∈ N:

WΩ0
= W µ

νρσ , WΩ1
= Dα1

WΩ0
= Dα1

W µ
νρσ , . . .

WΩk
= Dαk

WΩk−1
= Dαk

Dαk−1
. . .Dα2

Dα1
W µ

νρσ ,

where D is the Weyl-covariant derivative as introduced2 in [29].

In the latter work we introduced and operator that counts the number of metric ten-

sors appearing in a given expression. An inverse metric brings a minus-one contribu-

tion. Explicitly, ∆ex
g = gµν

∂
∂gµν

. For example, ∆ex
g (gαβgγδ) = 0 and ∆ex

g (gγσgλνWΩk
)

= −2(gγσgλνWΩk
) . By definition, the operator ∆ex

g gives zero when applied on the W -

tensors {WΩi
, i ∈ N} and on the generalized connections {C̃N} . Then, denoting3 by

∆µ
ν the generators of GL(n)-transformations of world indices acting on a type -(1, 1) ten-

sor T β
α as ∆µ

νT β
α = δµ

αT β
ν − δβ

ν T µ
α , the gauge covariant algebra G generated by {∆N} =

{∆ex
g ,Dν ,∆µ

ν ,Γα} reads [29]

[∆µ
ν ,Γ

α] = −δα
ν Γµ , [∆µ

ν ,Dα] = δµ
αDν , (3.4)

[∆ρ
µ,∆σ

ν ] = δρ
ν∆σ

µ − δσ
µ∆ρ

ν , [Γα,Γβ ] = 0 , (3.5)

[Dβ,Γα] = Pνα
βµ∆µ

ν − δα
β ∆ex

g , (3.6)

[Dρ,Dσ ] = −W µ
νρσ∆ν

µ − Cαρσ Γα , (3.7)

where Cαµν = 2∇[νKµ]α is the Cotton tensor and Pνα
βµ = (−gναgβµ + δν

βδα
µ + δα

β δν
µ) . The

operator ∆ex
g commutes with all the other generators. As shown in [29], the gauge covariant

2V. Wünsch informed us that such a construction had been obtained previously, see e.g. [34] and refer-

ences therein. Similar constructions and other references can be found in [35]. Apparently, all those works

lead back to the ones of T. Y. Thomas [36].
3Notation is slightly changed as compared with [29]. In passing, we also correct a couple of typos present

therein.
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algebra G is realized on the space W of tensor fields T and generalized connections {C̃N} .

The second term on the right-hand side of (3.6) was not written in [29]. However, it must

be present in order for the commutation relation [Dβ,Γα] to be realized on the metric

tensor as well, recalling Γαgµν = 0 = Dρgµν .

The generalized connections {C̃N} present in (3.2) are obtained from [29], setting the

diffeomorphisms ghosts ξµ to zero. All of them are Grassmann-odd and read

{C̃N} = {2ω , dxν , C̃ν
µ , ω̃α} ,

C̃ν
µ = Γν

µρ dxρ , ω̃α = ωα − Kαρ dxρ , ωα = ∂αω .

Then, with {∆N} = {∆ex
g ,Dν ,∆µ

ν ,Γα} , the action of s̃
W

on the tensor fields {T i} and

generalized connections {C̃N} can be written in the very concise form

s̃
W
T i = C̃N∆NT i , s̃

W
C̃N = 1

2 C̃LC̃KF N
KL (T ) ,

where F N
KL (T ) denote the structure functions of the gauge covariant algebra G:

[∆M ,∆N ] = F L
MN (T )∆L .

The relation s̃
W

C̃N = 1
2 C̃LC̃KF N

KL (T ) generalizes the so-called “Russian formula”. It

is rather remarkable that the sole equations (2.1)–(2.4) completely determine the gauge

covariant algebra (3.4)–(3.7).

A relevant issue concerning the algebra G given by (3.4)–(3.7) (it is not a Lie algebra)

is whether it can be related to the conformal algebra so(n, 2) . After all, we are considering

a general class of theories that are classically diffeomorphism and Weyl invariant, and

we know that such theories, in the flat limit gµν → ηµν , reduce to conformally-invariant

theories. Introducing the new set of generators {Pµ , Kν , Mµν , D } via

{∆µν , Γα , D } = { gµρ∆
ρ
ν , gαβΓ

β , δµ
ν ∆ν

µ − ∆ex
g } ,

{Pµ , Kν , Mµν } =

{
1

4
Dµ , 2Γν , −2∆[µν]

}
,

one gets from (3.4)–(3.7) the following gauge algebra:

[Pα,Mµν ] = 2 gα[µPν] , [Kα,Mµν ] = 2 gα[µKν] ,

[D,Pµ] = Pµ , [D,Kµ] = −Kµ ,

[Mαµ,Mβν ] = 2 gα[βMν]µ − 2 gµ[βMν]α ,

[Pµ,Kν ] = 2 (gµνD + Mµν) , [Kµ,Kν ] = 0 ,

[Pµ, Pν ] = −1

2
W ρσ

µν Mρσ − 1

2
Cαµν Kα

which is isomorphic to the conformal algebra so(n, 2) when gµν = ηµν , as was to be ex-

pected. Discussions and references on soft algebras, soft group manifolds and the transition

from curved to flat spacetime in this context can be found in [37].

After this short comment on the relation between the soft (gauge) covariant algebra

G and the (rigid) conformal algebra so(n, 2), we can proceed with the solution of the WZ

– 6 –



J
H
E
P
0
7
(
2
0
0
7
)
0
6
9

s̃lie
W

s̃0
W

s̃−1
W

C̃ν
µ −C̃ν

αC̃α
µ 0 s̃−1

W
C̃ν

µ

ω̃α C̃β
αω̃β

1
2 dxρdxσCαρσ 0

ω 0 dxµω̃µ 0

gµν C̃β
α∆α

βgµν 2ω gµν 0

WΩi
C̃β

α∆α
βWΩi

dxµDµWΩi
+ ω̃αΓ

αWΩi
0

Table 1: Decomposition of the action of s̃
W

consistency condition for the Weyl anomaly and its schematic solution (3.2). Because of

the fermionic nature of the Weyl ghost ω, the generalized connections C̃Ni in (3.2) must

all be different from 2ω , otherwise α(W) vanishes. The appearance of the undifferentiated

Weyl ghost ω in (3.2) is not an assumption. The Weyl-ghost dependence of the anomaly

an
1 can entirely be expressed in terms of the undifferentiated ghost ω , by integrating by

parts:
√−g ωα V α = ∂α(ω

√−g V α) − ω
√−g ∇αV α . We can now proceed with (3.1)

and expand α(W) in powers of the connection C̃ν
µ ,

α(W) =

m∑

k=0

α(W) , NC αk = k αk , NC = C̃ν
µ

∂L

∂C̃ν
µ

.

On W , the differential s̃
W

decomposes into three parts,

s̃
W

α(W) = (s̃lie
W

+ s̃0
W

+ s̃−1
W

)α(W) (3.8)

which have NC-degrees 1, 0, −1 respectively.

The action of s̃lie
W

, s̃0
W

and s̃−1
W

can be summarized in table 1, together with

s̃−1
W

C̃ν
µ =

1

2
dxρdxσW ν

µρσ + Pνα
βµ ω̃α dxβ .

The cocycle condition s̃
W

α = 0 thus decomposes into

0 = s̃lie
W

αm (3.9)

0 = s̃0
W

αm + s̃lie
W

αm−1 (3.10)

0 = s̃−1
W

αm + s̃0
W

αm−1 + s̃lie
W

αm−2

...

In the first equation, a contribution of the form s̃lie
W

βm−1 can be redefined away by sub-

tracting the trivial piece s̃
W

βm−1 from α . The solution of equation (3.9) is known because

we know the Lie algebra cohomology of gl(n) . Indeed, gl(n) ∼= R ⊕ sl(n) is reductive.

Since all the fields of W transform according to finite-dimensional linear representations of

gl(n), we have

αm = ϕi(dx, ω, ω̃α,T )P i(θ̃) , s̃lie
W

ϕi = 0 . (3.11)

The P i(θ̃) are linearly independent polynomials in the primitive elements θ̃K of the Lie

algebra cohomology of gl(n). The θ̃K ’s are monomials in the C̃ν
µ’s and correspond to the

independent Casimir operators of gl(n) .

– 7 –
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Inserting (3.11) in (3.10) gives

(s̃0
W

ϕi)P
i(θ̃) + s̃lie

W
αm−1 = 0 .

Again, using the Lie algebra cohomology, we deduce

s̃0
W

ϕi(dx, ω, ω̃α,T ) = 0 ∀ i . (3.12)

We can assume that none of the ϕi’s is of the form s̃
W

ϑ(dx, ω, ω̃α,T ) because otherwise we

could remove that particular ϕi by subtracting the trivial piece s̃
W

(ϑP i) from α . Such a

subtraction does not clash with the other redefinitions made so far. In particular it does

not reintroduce a term s̃lie
W

βm−1 in (3.11) because of the definition of the P i’s.

Hence, since the ϕi’s do not depend on the C̃ν
µ’s, we see that they are determined by

the s̃
W

-cohomology in the space of gl(n)-invariant local total forms ϕ(dx, ω, ω̃α,T ). [The

coboundary condition ϕ(dx, ω, ω̃α,T ) = s̃
W

ϑ(dx, ω, ω̃α,T ) requires ϑ to be gl(n)-invariant,

by expanding the equation in C̃ν
µ.] We thus have to solve

s̃
W

ϕ(dx, ω, ω̃α,T ) = 0 , ϕ(dx, ω, ω̃α,T ) 6= s̃
W

ϑ(dx, ω, ω̃α,T ) , (3.13)

s̃lie
W

ϕ = 0 = s̃lie
W

ϑ . (3.14)

In order to solve the above equations, we decompose the relation s̃
W

ϕ(dx, ω, ω̃α,T ) = 0

into parts with definite degree in the appropriately symmetrized W -tensor fields (see [29])

and analyze it starting from the part with lowest degree. The decomposition is unique and

thus well-defined thanks to the algebraic independence of the appropriately symmetrized

W -tensors. The decomposition of s̃
W

takes the form s̃
W

=
∑

k>0 s̃(k)
W

, [NW , s̃(k)
W

] = k s̃(k)
W

where NW is the counting operator for the — appropriately symmetrized — W -tensors.

The gl(n)-invariant local total form ϕ(dx, ω, ω̃α,T ) decomposes into a sum of gl(n)-

invariant terms

ϕ(dx, ω, ω̃α,T ) = ϕ(0)(dx, ω, ω̃α, gµν) +
∑

k>0

ϕ(k)(dx, ω, ω̃α,T ) ,

NW ϕ(k) = k ϕ(k) .

The condition s̃
W

ϕ = 0 requires, at lowest order in the tensor fields,

s̃(0)
W

ϕ(0)(dx, ω, ω̃α, gµν) = 0 . (3.15)

Furthermore, we can remove any piece of the form s̃(0)
W

ϑ(0)(dx, ω, ω̃α, gµν) from ϕ(0) by

subtracting the trivial piece s̃
W

ϑ(0) from ϕ . Hence, ϕ(0) is actually determined by the

s̃(0)
W

-cohomology in the space of gl(n)-invariant local total forms with no dependence on

the W -tensors. In particular, we can assume ϕ(0) 6= s̃(0)
W

ϑ(0)(dx, ω, ω̃α, gµν) . Writing ϕ(0) =

ω ℓ(0)(dx, ω̃α, gµν) , the condition (3.15) translates into dxµω̃µℓ(0) = 0 . The most general

ℓ(0)(dx, ω̃α, gµν) reads

ℓ(0)(dx, ω̃α, gµν) =
n∑

p=0

ηp dxα1 . . . dxαp ω̃α1
. . . ω̃αp +

+

n∑

p=0

λp√−g
εν1...νpµ1...µn−p gµ1α1

. . . gµn−pαn−p
dxα1 . . . dxαn−p ω̃ν1

. . . ω̃νp ,
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where ηp and λp are constants, 0 6 p 6 n . In the second line of the above equation,

we have inserted an appropriate power of det(gµν) in order that the corresponding local

total form ϕ possesses the correct weight to provide us with a candidate anomaly (the ε-

symbol is the completely antisymmetric weight–1 Levi-Civita tensor density), as imposed

by condition (2.6). The condition dxµω̃µℓ(0) = 0 imposes ηp = 0 , 0 6 p 6 n − 1 , which

yields

ϕ(0)(dx, ω̃α, gµν) = ηn ω dxα1 . . . dxαn ω̃α1
. . . ω̃αn +

+
ω√−g

n∑

p=0

λpε
ν1...νpµ1...µn−pgµ1α1

. . . gµn−pαn−p
dxα1 . . . dxαn−p ω̃ν1

. . . ω̃νp .

However, the first term is a local total form of degree 2n + 1 , which is too much since we

look for local total forms of degree (n + 1).4 Accordingly, we set ηn = 0 .

The next step consists in determining whether ϕ(0) is s̃(0)
W

-trivial or not. We find that

all the terms in ϕ(0) are s̃(0)
W

-trivial, except one. Indeed,

s̃(0)
W

J = ω
(n − 2p)√−g

εν1...νpµ1...µn−p gµ1α1
. . . gµn−pαn−p

dxα1 . . . dxαn−p ω̃ν1
. . . ω̃νp ,

where J =
1√−g

εν1...νpµ1...µn−p gµ1α1
. . . gµn−pαn−p

dxα1 . . . dxαn−p ω̃ν1
. . . ω̃νp ,

so that only the term with p = n/2 survives in the s̃(0)
W

-cohomology, leaving us with an

(n + 1)-total form ϕ(0).

Summarizing, with m = n
2 we have (up to an irrelevant constant coefficient)

ϕ(0) =
ω√−g

εν1...νm
µ1...µm

dxµ1 . . . dxµm ω̃ν1
. . . ω̃νm. (3.16)

Of course, this term exists only in even dimensions.

We may now ask what is the completion ϕ = ϕ(0) +
∑

k ϕ(k) of (3.16) that would

be invariant under the full differential s̃
W

. This question can be answered by using a

decomposition of ϕ and s̃
W

with respect to the ω̃α-degree. The differential s̃
W

decomposes

into a part noted s̃♭ which lowers the ω̃α-degree by one unit, a part noted s̃♮ which does

not change the ω̃α-degree and a part noted s̃♯ which raises the ω̃α-degree by one unit:

s̃
W

= s̃♭ + s̃♮ + s̃♯. The action of these three parts of s̃
W

is given in table 2.

The decomposition of ϕ with respect to the ω̃α-degree reads

ϕ = Φ[m]
m + Φ

[m+1]
m−1 + · · · + Φ

[n−1]
1 + Φ

[n]
0 ,

Φ[m]
m = ϕ(0) , m =

n

2
,

where each term Φ
[n−r]
r (0 6 r 6 m) is gl(n)-invariant, possesses a ω̃α-degree r and

explicitly contains the product of (n− r) dx’s. [Of course, some dx’s are also hidden inside

the ω̃α’s.]

4At most, the corresponding factor P (θ̃) being in this case P (θ̃) = 1 and the Weyl anomaly thus reducing

to α = αm = ϕ, cf. (3.11).
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s̃♭ s̃♮ s̃♯

ω̃α
1
2 dxρdxσCαρσ C̃β

αω̃β 0

ω 0 0 dxµω̃µ

WΩi
0 C̃β

α∆α
βWΩi

+ dxµDµWΩi
ω̃αΓ

αWΩi

gµν 0 C̃β
α∆α

β gµν + 2ω gµν 0

C̃ν
µ 0 −C̃ν

αC̃α
µ + 1

2 dxρdxσW ν
µρσ Pνα

βµ ω̃α dxβ

Table 2: Action of s̃
W

, decomposed w.r.t the ω̃α-degree

Decomposing the cocycle condition s̃
W

ϕ = 0 with respect to the ω̃α-degree yields the

following descent of equations

s̃♭Φ
[n−1]
1 + s̃♮Φ

[n]
0 = 0 ,

s̃♭Φ
[n−2]
2 + s̃♮Φ

[n−1]
1 + s̃♯Φ

[n]
0 = 0 ,

...

s̃♭Φ
[m]
m + s̃♮Φ

[m+1]
m−1 + s̃♯Φ

[m+2]
m−2 = 0 ,

s̃♮Φ
[m]
m + s̃♯Φ

[m+1]
m−1 = 0 ,

s̃♯Φ
[m]
m = 0 .

In the following theorem, we give the expression for Φ
[n−r]
r , 0 6 r 6 m , such that

ϕ =
∑m

r=0 Φ
[n−r]
r is a solution of s̃

W
ϕ = 0 with Φ

[m]
m = ϕ(0) (3.16). Furthermore, the

n-form Φ
[n]
0 is separately s̃

W
-invariant and the top form degree component of ϕ is nothing

but the type -A Weyl anomaly. The anomaly β = Φ
[n]
0 gives rise to a trivial descent and is

a linear combination of type -B anomalies obtained simply by contractions of products of

Weyl tensors.

Theorem 1. Let ψµ1...µ2p
be the local total form

ψµ1...µ2p
=

ω√−g
εα1...αr

ν1...νrµ1...µ2p
ω̃α1

. . . ω̃αr dxν1 . . . dxνr ,

p = m − r , m = n/2 , 0 6 r 6 m

and W µν the tensor-valued two-form

W µν = W µ
λ gλν =

1

2
dxρdxσW µ

λρσ gλν .

Then, the local total forms Φ
[n−r]
r (0 6 r 6 m)

Φ[n−r]
r =

(−1)p

2p

m!

r! p!
ψµ1...µ2p

W µ1µ2 . . . W µ2p−1µ2p

obey the descent of equations
{

s̃♭Φ
[n−r]
r + s̃♮Φ

[n−r+1]
r−1 = 0 ,

s̃♯Φ
[n−r]
r = 0 , (1 6 r 6 m)

s̃♭Φ
[n−1]
1 = 0 = s̃

W
Φ

[n]
0 ,
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so that the following relations hold:

s̃
W

α = 0 = s̃
W

β ,

α =

m∑

r=1

Φ[n−r]
r , β = Φ

[n]
0 .

Proof. The proof follows by direct computation, using the tracelessness of the Weyl tensor

and with the help of the identity ∇W µν = 2Cρ gρ[µdxν] relating the covariant differential

of the Weyl two-form W µν to the Cotton two-form Cρ = 1
2 dxµdxν Cρµν .

Finally, we have the

Theorem 2. (A) The top form-degree component an
1 of α (cf. Theorem 1) satisfies the

WZ consistency conditions for the Weyl anomalies. The WZ conditions for an
1 give rise to

a non-trivial descent and an
1 is the unique anomaly with such a property, up to the addition

of trivial terms and anomalies satisfying a trivial descent.

(B) The anomaly β = Φ
[n]
0 satisfies a trivial descent and is obtained by taking contrac-

tions of products of Weyl tensors (m of them in dimension n = 2m). The top form-degree

component en
1 of (α + β) is proportional to the Euler density of the manifold Mn :

en
1 =

(−1)m

2m
ω (Ra1b1 ∧ . . . ∧ Rambm

) εa1b1... ambm .

Proof. (A) When computing the solutions of (3.13) and (3.14), we used an expansion

of ϕ(dx, ω, ω̃α,T ) in the number of (appropriately symmetrized) W -tensors and found

a solution starting with a W -independent term ϕ(0) given in (3.16). This term, as we

showed, gives rise to (a representative of) the so-called type -A anomaly. However, in

order to compute the general solutions of (3.13) and (3.14), we must determine whether

other solutions exist, that would start with a term ϕ(ℓ) with ℓ > 0 . If one returns to

the decomposition of local total forms in terms of form degree and ghost number, writing

ϕ(dx, ω, ω̃α,T ) =
∑q+1

r=1 bp−r+1
r , the problem (3.13), (3.14), takes on the usual descent-

equation form

s
W

bp
1 + d bp−1

2 = 0 , (3.17)

s
W

bp−1
2 + d bp−2

3 = 0 ,

...

s
W

bp−q+1
q + d bp−q

q+1 = 0 , (3.18)

s
W

bp−q
q+1 = 0 (0 6 q 6 p 6 n), (3.19)

where every element bp−i
i+1 (0 6 i 6 q) transforms as a local (p − i)-form under spacetime

diffeomorphisms, so that d bp−i
i+1 = ∇bp−i

i+1 where ∇ = dxµ∇µ is the Levi-Civita covariant

differential. One assumes that the descent is displayed in its shortest expansion, i.e. that

q is minimal. This means that bp−q
q+1 is non-trivial in Hq+1,p−q(s

W
|d) since otherwise bp−q

q+1 =

s
W

µp−q
q + dµp−q−1

q+1 and (3.18) would then become s
W

[bp−q+1
q − dµp−q

q ] = 0, which, upon

redefining bp−q+1
q , would imply that the descent has shortened by one step, contrary to the

shortest-descent hypothesis.
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A priori, the head of the descent, bp
1 , possesses a form degree p 6 n because

candidate anomalies are obtained by completing [see eqs. (3.9)–(3.11)] the product

ϕ(dx, ω, ω̃α,T )P (θ̃), where P (θ̃) is a polynomial in the primitive elements θ̃K of the Lie

algebra cohomology of gl(n) and possesses a non-vanishing form degree, except for the

trivial element P (θ̃) = 1 . The ghost number of bp
1 must be one because the P i(θ̃)’s have a

vanishing Weyl-ghost degree. On the other hand, it is known that the condition (2.6), in

the absence of (derivatives of) diffeomorphisms ghosts, admits only two kinds of terms [38].

The first have the general form Ldnx where the lagrangian density L is constructed out

of the Riemann tensor, the matter fields, the Yang-Mills field strength and their covariant

derivatives. The second class of terms contains the pure-gravity Chern-Simons densities

that depend explicitly on the Riemannian connection one-form C̃ν
µ and on the undifferen-

tiated curvature two-form Rµ
ν = 1

2 Rµ
νρσdxρdxσ . Since the candidate Weyl-anomalies are

linear in the Weyl-ghost ω which plays the rôle of a matter field, we conclude that no Chern-

Simons term can appear in an
1 , and hence the only allowed polynomial P (θ̃) is the trivial

one, P (θ̃) = 1 , which in turn implies that one can set p = n in the descent (3.17)–(3.19),

without loss of generality.

The case where q = 0 means that the descent is trivial and the candidate anomalies

satisfy s
W

an
1 = 0 . These are the type -B Weyl anomalies that can be classified and com-

puted systematically along the lines of [28, 29]. Accordingly, in what follows we assume

q > 0.

The bottom of the descent is obtained from α(W) by taking its maximal ω̃α-degree

component and taking only the contribution ωα of ω̃α = ωα−dxµKµα. In other words, the

bottom of the descent must not depend on the one-form potential Aα = −dxµKµα . A pri-

ori, when determining the most general non-trivial bottom bn−q
q+1 in (3.19), the dependence

on the space of W -tensors can be complicated. However, it was proved in [32] that, for

any given (super) Lie algebra g, the solutions of non-trivial descents as in (3.17)–(3.19) can

be computed, without loss of generality, in the small algebra B generated by the one-form

potentials, the curvature two-forms, the ghosts and the exterior derivatives of the ghosts.

In the present setting, the curvature two-forms decompose into W µ
ν = 1

2 dxρdxσ W µ
νρσ

and Cα = 1
2 dxρdxσ Cαρσ, which take their values along the generators ∆ν

µ and Γα, respec-

tively, as can be read off from (3.7). The algebra generated by {∆ν
µ,Γα} [see (3.4), (3.5)] is

non-reductive, being isomorphic to the semi-direct sum of gl(n) and the abelian translation-

like algebra t(n) . In analogy with a Yang-Mills gauge theory, the rôle of the Killing metric

is played here by gµν which obeys Dρgµν = 0 . Another invariant object at our disposal is

the Levi-Civita ε symbol. The exterior differentials of the ghosts give dxαωα and dxβ∂βωα,

but the latter must be rejected because they do not belong to W .

To summarize, the bottom of the descent bn−q
q+1 can depend on the W -tensors only

through the curvature two-forms Cα and W µ
ν . It is linear in the undifferentiated ghost

ω and must not depend on Aα = −dxµKµα . Moreover, it is easy to see that the Cotton

two-form Cα cannot enter bn−q
q+1 since otherwise, up to a trivial d-exact term, bn−q

q+1 would

depend on Aα . This is because Cαµν = 2∇[νKµ]α and the fact that ∇ may be replaced

by the exterior differential d inside the descent made of p -forms.
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Hence, the general form of bn−q
q+1 is given by a linear combinaison of terms of the form

ω Tr (
∏

i,j,k W µi
νi ωρj

dxσk) where the trace is obtained by using the metric and the ε symbol.

The relation W µ
νωµ = −s

W
Cν (see e.g. [29]) shows that no W µi

νi can be contracted with a

ωρ. Together with the identity W µ
νdxρgρµ = 0, this shows that the indices of the W µi

νi ’s

must be contracted among themselves.

Suppose first that we use no Levi-Civita ε symbol in order to contract the indices

in
∏

j,k ωρj
dxσk . The corresponding bn−q

q+1 ’s look like bn−q
q+1 ∼ ω Tr (

∏
i W

µi
νi)

∏q
j ωρj

dxρj .

Taking the exterior derivative of such a term gives contributions where d hits ω and con-

tributions when d hits one of the W µi
νi ’s. Trivially, d(ωαdxα) = 0 because ωα = ∂αω .

Because in d bn−q
q+1 one can replace dW µ

ν by 2Cρ gρ[µdxσ] gσν and because W µ
νdxρgρµ = 0,

only the contribution from dω survives in d bp−q
q+1 . This provides terms of the form

d bp−q
q+1 ∼ Tr (

∏
i W

µi
νi)

∏q+1
j ωρj

dxρj that, in the space Y obtained from W by discarding

the C̃µ
ν ’s, clearly belong to the cohomology of s

W
— it suffices to use the results of [39],

taking the linearized part of d bp−q
q+1 — and therefore are obstructions to the lift (3.18) of

bn−q
q+1 .

The only other possibilities in the expression of the candidate bn−q
q+1 are exhausted by

bn−q
q+1 ∼ ω Tr

(∏

i

W µi
νi

) √−g εσ1...σqρ1...ρn−q
gσ1τ1 . . . gσqτq ωτ1 . . . ωτq dxρ1 . . . dxρn−q .

However, such terms are non-trivial in H(s
W

,Y) iff q = n/2 . Since the factor

Tr (
∏k

i=1 W µi
νi) brings a form degree 2k and because the remaining factor in bn−q

q+1 already

gives an n-form at the top of the descent, we conclude that k = 0 and the bottom of the

descent reduces to the only term (m = n/2)

bm
m+1 = ω

√−g εσ1...σmρ1...ρm gσ1τ1 . . . gσmτmωτ1 . . . ωτm dxρ1 . . . dxρm (3.20)

which is contained in (3.16). The latter term gives rise to the candidate anomaly α pre-

sented in Theorem 1. Because (3.20) is non-trivial in the cohomology H(s
W

,Y), so is the

corresponding an
1 in H(s

W
|d), taking into account (2.6) and (2.8). This proves part (A) of

the theorem.

Part (B) is proved by direct computation. ¤

4. Conclusion

We solved the Wess-Zumino consistency condition for the Weyl anomalies by explicitly

computing the cohomology of the corresponding BRST differential in the space of integrated

local functions at ghost number unity. The analysis features descent equations à la Stora-

Zumino and provides a general, purely algebraic understanding of the structure of the Weyl

anomalies in arbitrary dimensions.

The approach followed here is purely cohomological and independent of any regulariza-

tion scheme. No dimensional argument is used and the evenness of the spacetime dimension

is a consequence of the Wess-Zumino consistency condition, as is the general structure of

the Weyl anomalies.
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Plenum Press, New York U.S.A. (1976); Algebraic structure and topological origin of

anomalies, in Recent progress in gauge theories, LAPP-TH-94, Cargèse Lectures, ed. H.
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